
Working ME218C Communications Protocol
Spring 2013

May 10, 2013
Communication Committee

Revision History
Date What Who
May 8, 2013 Initial draft of protocol Communications Committee
May 9, 2013 Revised draft of protocol Michael Bunne, …
May 10, 2013 State diagrams updated David Stonestrom
May 10, 2013 State diagrams updated.

Corrected Typos
Ramanan Sampath

May 10, 2013 Undid state diagram changes,
fixed actual state diagram
errors, added explanation

David Stonestrom

May 10, 2013 Finalized for second
submission

May 11, 2013 Responded to Ed’s comments David Stonestrom

Overview
This communications protocol details the communications for ME218C in spring 2013. The purpose is
to allow each team’s POD (creative input device) to control every other team’s ROAMER (mobile
platform with gripper to move safety hatch and open airlock).

This communication works over a wireless Xbee network. The PODs request to take over individually
numbered (1-3) ROAMERs through a broadcast transmission. If a ROAMER is not connected to
another POD, it allows incoming POD requests to connect. When the POD is about to get too far out of
orbit, it disconnects from the ROAMER, allowing the next POD to connect to it and take control. While
connected, ROAMERs send back their status each time they receive a message directed at them from the
correct POD.

If either the ROAMER or the POD misses five messages in a row (one second of communication) it will
treat the connection as lost.

Note for the next few weeks
For testing purposes, use a ROAMER number of (Team # + 3) unless you are deliberately testing on
ROAMER number 1-3 for interoperability. This is to avoid one group accidently driving another
group’s ROAMER off the work bench.

State Charts

There is an important distinction for working on the events and services framework:
 Messages are the full Xbee protocol 13 or 14 bytes that start with 0x7E and end with the

checksum
 Message Events are ES_Event events which tell state machines about messages

On each of the POD and the ROAMER, there are three state machines running to handle
communication, as well as interrupt responses for the asynchronous transmit and receive interrupts (this
can be done with polling if you prefer).

The interrupt response for receive is always active. It pulls in bytes as they arrive and interacts directly
with the AsyncReceiveSM to compose incoming messages from the incoming bytes. After a correct and
complete message has arrived, there should be a post to one of the other two state machines. The
XbeeMessagesSM should be alerted about message status replies from the Xbee with the event
MessageStatus. Incoming messages from another Xbee should be sent along to the CommunicationSM
for the device with the event MessageReceived. In each case, the events and services framework will
not pass the whole message in an event, so you will need to make your own arrangements for passing
the message around.

The interrupt response for transmit is only enabled when the XbeeMessagesSM is in particular states,
and only until it has finished sending one message. As it transfers the checksum to the asynchronous
hardware, the interrupt should disable itself.

The XbeeMessagesSM on each device is responsible for getting each message sent. It is moved from its
idle state by the device’s CommunicationSM posting TransmitMessage or BroadcastMessage. No two
of these posts should come more frequently the 5Hz due to the structure of the CommunicationSM.
Once a TransmitMessage or BroadcastMessage event has been posted to the XbeeMessagesSM, it will
attempt to send the message three times before declaring failure. It is up to each group to handle the
debugging response for losing a message. Due to the slow message rate, there should be no issues with
the XbeeMessagesSM finishing its three attempts before another message needs to be sent.

The CommunicationSM for each device is responsible for the highest level of the communication
protocol. It should get MessageReceived events when the Xbee receives a message, and should post to
the XbeeMessagesSM when it wants to send messages. It is responsible for handling connection
requests, disconnect requests, ROAMER status messages, and POD command transmissions between
PODs and ROAMERs.

Async Receive State Machine:

This is a simple state machine to process incoming messages. It should work with the async receive
interrupt, putting bytes in the correct location as they come in. Once the message is complete and the
checksum is checked, the state machine should route the message to either the XbeeMessagesSM or the
CommunicationSM. Red transitions represent error is receiving the message, and should be handled for
debugging.

POD Xbee Messages State Machine:

The receive interrupt should post MessageStatus events to the XbeeMessagesSM when the incoming
message API is a message status (0x89). The TransmitMessage and BroadcastMessage events come
from the POD_CommunicationSM. The 5Hz limit on transmit rates and the structure of the state
machines means you should never be posting these events when the XbeeMessagesSM is not in the idle
state, but it is up to each group to implement their own error checking and debugging. The designed
function of this state machine is that it ignores the second message posted.

POD Communication State Machine

The receive interrupt should post MessageReceived to the POD_CommunicationSM when it receives an
incoming message API (0x81). The POD Communication SM will ignore any other POD’s messages due to
the message type guard conditions. It will also ignore any ROAMER except the one it is in control of due to
the ROAMER address guard condition. If two ROAMERs share a ROAMER number, the POD will only
command the first to respond, and the second one will have to time out in order to get disconnected from the
POD it thinks is controlling it.

ROAMER Xbee Messages State Machine
This is just the POD version without the loop for handling broadcast messages.

The receive interrupt should post MessageStatus events to the XbeeMessagesSM when the incoming
message API is a message status (0x89). The TransmitMessage event comes from the
ROAMER_CommunicationSM. The 5Hz limit on transmit rates and the structure of the state machines
means you should never be posting these events when the XbeeMessagesSM is not in the idle state, but
it is up to each group to implement their own error checking and debugging. The designed function of
this state machine is that it ignores the second message posted.

ROAMER Communication State Machine

The receive interrupt should post MessageReceived to the ROAMER_CommunicationSM when it
receives an incoming message API (0x81). The ROAMER will ignore anything except Connect
requests when not connected. It will then respond to the first POD to send a connection request with its
ROAMER number. Once connected, it will ignore any connection requests and any messages not from
its POD.

Byte Specifications, Overall Format
This protocol is meant to be included inside of an Xbee packet. A brief explanation of the Xbee format
follows. Our data packets are included in the Data section.

Sending a Packet of Data
When you want to tell your Xbee to send a message into the world:
Start
Delimiter

Length
HI

Length
LO

API
ID

Frame Target
Addr HI

Target
Addr
LO

Options Data <6 or
5 bytes>

Checksum

Start Delimiter:
0x7E for all communications

Length:
HI – 0x00 for all communications

LO – 0x0B if sending from POD
 – 0x0A if sending from ROAMER

API ID:
0x01 for all outbound communications

Frame ID:
Start at any number of your choosing, and increment with each sending operation

-Note: if you allow the Frame ID to be 0, it will disable the response frame from your
Xbee to your PIC (you won’t get a message with API ID of 0x89 from your Xbee for that
command)

Target Address:
For PODs:

If NOT already connected to a ROAMER: Set to 0xFFFF to broadcasting a “Connect”
message

If already connected to a ROAMER: Set both bytes to Address of that ROAMER
-Note: Every time you receive a response from a ROAMER, your Xbee will include the

Source Address of the response. This is the Target Address that you should use to communicate directly
to that ROAMER for all future messages until Disconnection occurs.

For ROAMERs:
If NOT already connected to a POD: You should not be sending responses
If already connected to a POD: Set both bytes to Address of that POD
-Note: Every time you receive a message from a POD, your Xbee will include the Source

Address of the message. This is the Target Address that you should use to communicate directly to that
POD for all future responses until Disconnection occurs. The ROAMER sends messages only in
response to messages from the POD. It does not initiate a transmission (a broadcast) on its own.

Options:
0x00 for all outbound communications

Data:
6 bytes if sending from POD (Type, Message bytes 1-5)
5 bytes if sending from ROAMER (Type, Message bytes 1-4)

Data Packet types: POD to ROAMER
“Connect” to ROAMER:
0x00 ROAMER # (0x01,

0x02, or 0x03)
0x00 0x00 0x00 0x00

-The ROAMER # should be controlled by an input on your POD and the command will be
broadcasted to all devices activated. The ROAMER whose # matches your request (also indicated by a
switch on the ROAMER) will reply (with an “Accepted Connection” response) and then you will
proceed to talk only to that ROAMER based on the Source Address of that message.

-Note: Other PODs activated will also receive this message. It is the duty of each POD to simply
ignore messages from other PODs.

“Disconnect” from ROAMER:
0x0
1

0x0
0

0x0
0

0x0
0

0x0
0

0x00

-The ROAMER must still send a reply of “Disconnect Accepted” to acknowledge the disconnect.
There is also a predetermined period of no response time that will also signal a disconnect. If any device
(ROAMER or POD), while believing to be connected, experiences 5 full cycles (running at 200ms each
= 1 sec) without receiving message or response from the other side, then the device will assume the
connection has been broken and will return to their Disconnected state.

Sending a “Command” to ROAMER:
0x02 Left Wheel Right Wheel Gripper Camera Digital I/Os

-Left Wheel:
0x00 – Left Wheel Full Reverse
0x40 – suggested cutoff for ROAMERs which only drive at full speed
0x80 – Left Wheel stopped
0xC0 – suggested cutoff for ROAMERs which only drive at full speed
0xFF – Left Wheel Full Forward

-Right Wheel:
0x00 – Right Wheel Full Reverse
0x40 – suggested cutoff for ROAMERs which only drive at full speed
0x80 – Right Wheel stopped
0xC0 – suggested cutoff for ROAMERs which only drive at full speed
0xFF – Right Wheel Full Forward

-Gripper:
Bit 7 (MSB): Digital bit devoted to Gripper Actuation #1
Bits 0-6: Analog bits devoted to Gripper Actuation #2
-Note: Each POD should have two inputs for the gripper (one for each potential

actuation), but neither of these inputs necessarily have to be analog. If a group decides to use 2 digital
inputs for the gripper control, they may. The 2nd digital input will be sent as the 7 analog bits railed high
or railed low, and it is up to the ROAMER to interpret this however necessary to complete the desired
action.

-Camera:
0x00 – From the Camera's Perspective, turned LEFT from default, 180° from default

position
0x40 – suggested cutoff for ROAMERs that turn camera LEFT with digital response
0x80 – Camera Default Position
0xC0 – suggested cutoff for ROAMERs that turn camera RIGHT with digital response

0xFF – From the Camera's perspective, turned RIGHT from default, 180° from default
position

-Note: for ROAMERs and PODs with only 2 camera positions or only 1 direction that
the camera turns from default, use 0x00 to 0x80 regardless of camera orientation

-Digital I/Os:
Bit 0: Digital bit devoted to controlling SPECIAL’s lower RIGHT light
Bit 1: Digital bit devoted to controlling SPECIAL’s upper CENTER light
Bit 2: Digital bit devoted to controlling SPECIAL’s lower LEFT light
Bits 3-7 (MSB): Digital bits devoted to any extra (non-mission critical) commands that

may be unique to a particular ROAMER (fans, beacons, self destruct sequence, Harlem Shake). PODs
with fewer than 5 additional inputs should route whatever inputs they have to the address starting with
Bit 3 (i.e. the most critical of any extra functions a ROAMER can perform should be controlled by Bit 3
with lesser important functions being controlled by successively higher bits)

-Note: while it is not required for any POD to have all 5 additional inputs for these
optional extra commands, it is STRONGLY encouraged (as in nearly required) to provide at least 1 of
these inputs.

Data Packet types: ROAMER to POD
Sending “ROAMER Status” to POD:
0x03 SPECIAL

Battery %
SPECIAL
charging/discharging status

SPECIAL LED states Last Camera Command

-The 3 bytes corresponding to the SPECIAL are exactly the same as generated from the
SPECIAL when queried from the ROAMER’s PIC (it is simply passing this data back to the POD). The
last byte is information about the previous camera position that can be used by the POD if the camera
control is rate-based (as opposed to position based).

Sending “Connect Accepted” to POD:
0x0
4

SPECIAL
Battery %

SPECIAL
charging/discharging status

SPECIAL LED states Last Camera Command

-The ROAMER will always send the 3 bytes corresponding to the SPECIAL, and will simply
change the Type (1st bit) to indicate that it is responding to a Connection, Disconnection, or a standard
Command.

Sending “Disconnect Accepted” to POD:
0x0
5

SPECIAL
Battery %

SPECIAL
charging/discharging status

SPECIAL LED states Last Camera Command

-The ROAMER will always send the 3 bytes corresponding to the SPECIAL, and will simply
change the Type (1st bit) to indicate that it is responding to a Connection, Disconnection, or a standard
Command.

Checksum:
-Standard Checksum procedure for talking to the Xbee
-There is no additional Checksum to maintain congruence from PIC to PIC (only the standard

PIC to Xbee will be used)

Result from a Transmit Packet
After you tell your Xbee to send a message into the world, it will (almost) immediately reply with:
Start Delimiter Length HI Length LO API ID Frame Status Checksum

Start Delimiter:
0x7E for all replies

Length:
0x03 for all replies

API ID:
0x89 for all replies

-Note: For broadcasts, there is only a 0x89 if the message did not send. If you
successfully broadcast a message, expect no 0x89 back from your Xbee.

Frame ID:
The same Frame ID of the message you just sent the Xbee

-Note: if you allow the Frame ID to be 0, it will disable the response frame from your
Xbee to your PIC (you won’t get a message with API ID of 0x89 from your Xbee for that
command)

Status:
0x00 = Success
0x01 = No ACK received (meaning it failed to transmit the message, after multiple retries)
0x02 = CCA failure
0x03 = Purged

Checksum:
-Standard Checksum procedure for talking to the Xbee
-There is no additional Checksum to maintain congruence from PIC to PIC (only the standard

PIC to Xbee will be used)

An Incoming Packet
When your Xbee receives a message addressed to you (or broadcasted) from the world, it sends you:
Start
Delimiter

Length
HI

Length
LO

API
ID

Source
Addr HI

Source
Addr LO

RSSI Options Data <6 or
5 bytes>

Checksum

Start Delimiter:
0x7E for all communications

Length:
HI – 0x00 for all communications

LO – 0x0B if packet is from POD
 – 0x0A if packet is from ROAMER

API ID:
0x81 for all incoming communications sent from the outside world (not our Xbee responding to

a command we just tried to send)

Source Address:
These two bytes represent the unique address of the device that just sent you the message. If you

determine that you wish to communicate with this device directly in the future, you should probably
record these bytes and set them as the Target Address bytes for your next Outgoing Packet

RSSI (Received Signal Strength Indicator):
Hexadecimal equivalent of signal strength (probably not important for our purposes)

Options:
0x01 = Address broadcast
0x02 = PAN broadcast

Data:
6 bytes if received from POD (Type, Message bytes 1-5)
5 bytes if received from ROAMER to POD (Type, Message bytes 1-4)

